Photocatalytic Reactor as a Bridge to Link the Commercialization of Photocatalyst in Water and Air Purification

Author:

Li Yunzhang,Ma Youjia,Li Kan,Chen Suhong,Yue Dongting

Abstract

The development of clean and sustainable teleology is vital to treat the critical environmental pollutants. In the last decade, the use of photocatalytic reactors has been widely reported for organic pollutants degradation. From photocatalysis’s application in environmental remediation, the primary technical issue to scientists is always the efficiency. The enhanced photocatalytic efficiency is mainly depended on the materials improvement. However, the design of photoreactors lags behind the development of photocatalysts, which strongly limit the widespread use of photocatalysis technology in environmental remediation. The nanoparticles separation, mass transfer limitation, and photonic efficiency have always been problematic and restrict the high photocatalytic efficiency of photoreactors. To overcome these bottleneck problems, the most popular or newfangled designs of photoreactors employed in air and water treatment has been reviewed. The purpose of this review is to systematize designs and synthesis of innovative TiO2-based photoreactors and provides detailed survey and discussion on the enhanced mechanism of photocatalytic performance in different TiO2-based photoreactors. The most studied photoreactors are the following: packed bed reactor, film reactor and membrane reactor, which have some limitations and advantages. A comprehensive comparison between the different photocatalytic performance of TiO2-based photoreactors is presented. This work aims to summarize the progress of TiO2-based photoreactors and provides useful information for the further research and development of photocatalysis for water and air purification.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3