Abstract
Abstract
This study reports the efficient synthesis and thorough characterization of novel graphene doped
BiV
O
4
/
ZnO
nanocomposites. Among these doping percentages, 3% BVZO/G is optimized composite as it shows the highest photocatalytic performance i–e 98% and 95% among all the doping percentages. Under the visible light exposure
λ
⩾
420
nm
, the decomposition of tetracycline (TC) and methylene blue has been studied to evaluate the photocatalytic activity of the prepared composites. The characterization techniques such as photoluminescence spectroscopy, UV visible (UV-Vis) spectroscopy, x-ray diffraction, scanning electron microscopy, and Fourier transform infrared have been used to investigate the optical, structural, morphological, and vibrational properties respectively. The findings of the research indicate that the doping of graphene resulted in enhanced absorption of visible light and efficient mitigation of charge carrier recombination. To check the stability of optimized photocatalyst, reusability test has been performed. Additionally, role of active species has been examined using different scavengers in trapping experiment. By understanding the composite material for the enhanced photocatalysis, the results of this research help to design a sustainable and efficient photocatalyst.
Funder
King Saud University, Riyadh, Saudi Arabia
Researchers Supporting Project
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献