Performance Optimization and Toxicity Effects of the Electrochemical Oxidation of Octogen

Author:

Qian Yishi,Chen Kai,Chai Guodong,Xi Peng,Yang Heyun,Xie Lin,Qin Lu,Lin Yishan,Li Xiaoliang,Yan Wei,Wang DongqiORCID

Abstract

Octogen (HMX) is widely used as a high explosive and constituent in plastic explosives, nuclear devices, and rocket fuel. The direct discharge of wastewater generated during HMX production threatens the environment. In this study, we used the electrochemical oxidation (EO) method with a PbO2-based anode to treat HMX wastewater and investigated its degradation performance, mechanism, and toxicity evolution under different conditions. The results showed that HMX treated by EO could achieve a removal efficiency of 81.2% within 180 min at a current density of 70 mA/cm2, Na2SO4 concentration of 0.25 mol/L, interelectrode distance of 1.0 cm, and pH of 5.0. The degradation followed pseudo-first-order kinetics (R2 > 0.93). The degradation pathways of HMX in the EO system have been proposed, including cathode reduction and indirect oxidation by •OH radicals. The molecular toxicity level (expressed as the transcriptional effect level index) of HMX wastewater first increased to 1.81 and then decreased to a non-toxic level during the degradation process. Protein and oxidative stress were the dominant stress categories, possibly because of the intermediates that evolved during HMX degradation. This study provides new insights into the electrochemical degradation mechanisms and molecular-level toxicity evolution during HMX degradation. It also serves as initial evidence for the potential of the EO-enabled method as an alternative for explosive wastewater treatment with high removal performance, low cost, and low environmental impact.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3