The Methods and Characteristics of the Electrochemical Oxidation Degradation of HMX

Author:

Qian Yishi1ORCID,Jing Xiaosheng1,Yan Wei1,Xi Peng2

Affiliation:

1. Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

2. Xi’an Modern Chemistry Research Institute, Xi’an 710065, China

Abstract

Octagon (HMX) is a typical organic pollutant of explosives in the surrounding environments of military factories, and it is widely regarded as a carcinogen which may enter the human body through wastewater and atmospheric exposure, resulting in potential health risks. Therefore, this paper studies the degradation of HMX by electrochemical oxidation. In this study, an electrochemical system was built using a copper plate as the cathode and a Ti/PbO2 electrode as the anode. The effects of various process variables, such as the initial pH value, the current density, and the distance between the electrodes, were investigated in relation to HMX degradation. Following this, performance optimization and intermediate analysis were carried out, along with an estimation of the energy consumption of HMX deterioration in various operating situations. The experimental results in this paper show that when the electrolyte concentration is 0.25 mol/L, the current density is 70 mA/cm2, the electrode spacing is 1.0 cm, and the initial pH is 5.0. Electrochemical oxidation has a better treatment efficiency for pollutants, and the removal rate reaches 81.2%. The findings of kinetic research reveal that the electrochemical oxidation degradation process of HMX follows quasi-first-order kinetics, and protein stress and Deoxyribo Nucleic Acid (DNA) loss stress are significantly different from other stress types throughout the whole degradation process. HMX degradation solution causes damage to protein transcription or expression. However, some genes of oxidative stress are continuously up-regulated, because H2O2 and OH produced by electrochemical oxidation cause a strong response to oxidative stress in cells. The research findings in this report offer crucial guidance and suggestions for the industrialization of HMX wastewater treatment.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3