Controlling the Structural Properties and Optical Bandgap of PbO–Al2O3 Nanocomposites for Enhanced Photodegradation of Methylene Blue

Author:

Mebed Abdelazim M.,Abd-Elnaiem Alaa M.ORCID,Alshammari Alhulw H.,Taha Taha A.,Rashad Mohamed,Hamad DaliaORCID

Abstract

In the present work, PbO-x wt% Al2O3 nanocomposites (where x = 0, 10, 20, 30, 40, 50, 60, 70, and 100 wt%) were prepared by a microwave irradiation method. Their structural parameters, morphology, and chemical bonds, were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR). It was noticed that the produced phases have an orthorhombic crystal structure and the smaller average crystallite sizes were formed when the ratio of Al2O3 is 40 wt%. The FTIR analysis reveals the formation of various bonds between Al or Pb and O. The TEM analysis reveals that the PbO-x%Al2O3 composites (x = 20, 40, and 60), composed of dense particles, and their size are smaller compared to the pure Al2O3 sample. The optical bandgap obeys the direct allowed transition and decreases from 4.83 eV to 4.35 eV as the PbO ratio in the composites increases from 0 to 100%. The intensity of the photoluminescence emission, at the same wavelength, increases as the PbO ratio increases from 0% to 60% implying that increasing the PbO content increases the capacity of free carriers within the trap centers. The prepared composites are used as a catalyst to remove the methylene blue (MB) from the wasted water under UV-visible or visible light irradiations. The photocatalytic degradation of MB was investigated by applying various kinetic models. It was found that the PbO-30% Al2O3, and PbO-40% Al2O3 composites are the best ones amongst other compositions. Furthermore, the pseudo-second-order model is the best model for describing the deterioration mechanism among the models studied. The formed composites could be suitable for the degradation of organic dyes for water purification as well as applications that required a higher optical bandgap.

Funder

Al Jouf University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3