Author:
Ren Yuqing,Chen Yao,Li Qinyu,Li Hexing,Bian Zhenfeng
Abstract
Introducing microwave fields into photocatalytic technology is a promising strategy to suppress the recombination of photogenerated charge carriers. Here, a series of microwave-absorbing photocatalysts, xCNTs/TiO2, were prepared by combining titanium dioxide (TiO2) with carbon nanotubes (CNTs) using a typical alcoholic thermal method to study the promotion of microwave-generated thermal and athermal effects on the photocatalytic oxidation process. As good carriers that are capable of absorbing microwaves and conducting electrons, CNTs can form hot spots and defects under the action of the thermal effect from microwaves to capture electrons generated on the surface of TiO2 and enhance the separation efficiency of photogenerated electrons (e−) and holes (h+). Excluding the influence of the reaction temperature, the athermal effect of the microwave field had a polarizing effect on the catalyst, which improved the light absorption rate of the catalyst. Moreover, microwave radiation also promoted the activation of oxygen molecules and hydroxyl groups on the catalyst surface to generate more reactive oxygen radicals. According to the mechanism analysis, the microwave effect significantly improved the photocatalytic advanced oxidation process, which lays a solid theoretical foundation for practical application.
Funder
the National Key Research and Development Program of China
the National Natural Science Foundation of China
Shanghai Government
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献