Xylan Deconstruction by Thermophilic Thermoanaerobacterium bryantii Hemicellulases Is Stimulated by Two Oxidoreductases

Author:

Yi Zhuolin,Su Xiaoyun,Asangba Abigail E.ORCID,Abdel-Hamid Ahmed M.ORCID,Chakraborty Siddhartha,Dodd Dylan,Stroot Peter G.,Mackie Roderick I.,Cann Isaac

Abstract

Thermoanaerobacterium bryantii strain mel9T is a thermophilic bacterium isolated from a waste pile of a corn-canning factory. The genome of T. bryantii mel9T was sequenced and a hemicellulase gene cluster was identified. The cluster encodes seven putative enzymes, which are likely an endoxylanase, an α-glucuronidase, two oxidoreductases, two β-xylosidases, and one acetyl xylan esterase. These genes were designated tbxyn10A, tbagu67A, tbheoA, tbheoB, tbxyl52A, tbxyl39A, and tbaxe1A, respectively. Only TbXyn10A released reducing sugars from birchwood xylan, as shown by thin-layer chromatography analysis. The five components of the hemicellulase cluster (TbXyn10A, TbXyl39A, TbXyl52A, TbAgu67A, and TbAxe1A) functioned in synergy to hydrolyze birchwood xylan. Surprisingly, the two putative oxidoreductases increased the enzymatic activities of the gene products from the xylanolytic gene cluster in the presence of NADH and manganese ions. The two oxidoreductases were therefore named Hemicellulase-Enhancing Oxidoreductases (HEOs). All seven enzymes were thermophilic and acted in synergy to degrade xylans at 60 °C. Except for TbXyn10A, the other enzymes encoded by the gene cluster were conserved with high amino acid identities (85–100%) in three other Thermoanaerobacterium species. The conservation of the gene cluster is, therefore, suggestive of an important role of these enzymes in xylan degradation by these bacteria. The mechanism for enhancement of hemicellulose degradation by the HEOs is under investigation. It is anticipated, however, that the discovery of these new actors in hemicellulose deconstruction will have a significant impact on plant cell wall deconstruction in the biofuel industry.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3