Abstract
The implementation of nano-additives in machining fluid is significant for manufacturers to attain a sustainable manufacturing process. The material removal rate (MRR) is a significant process of transforming solid raw materials into specific shapes and sizes. This process has many challenges due to friction, vibration, chip discontinuity when machining aluminum alloy, which has led to poor accuracy and affected the fatigue life of the developed material. It is worth noting that aluminum 8112 alloy is currently being applied in most engineering applications due to its lightweight-to-strength ratio compared to some other metals. This research aims to compare the effects of copra oil-based-titanium dioxide (TiO2)- and Multi-walled Carbon Nanotubes (MWCNTs)-nano-lubricant with cutting parameter interactions by conducting a study on MRR for advanced machining of aluminum 8112 alloys. The biodegradable nano-additive-lubricants were developed using two-step preparation techniques. The study employed a quadratic rotatable central composite design (QRCCD) to carry out the interaction study of the five machining parameters in the three lubrication environments on MRR. The results show that the copra-based-TiO2 nano-lubricant increases the MRR by 7.5% and 16% than the MWCNTs and copra-oil-lubrication machining environments, respectively. In conclusion, the eco-friendly nano-additive-lubricant TiO2-Copra oil-based should be applied to manufacture machine parts for high entropy applications for sustainable production systems.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献