CaCl2 as a Mineralizing Agent in Low-Temperature Recycling of Autoclaved Aerated Concrete: Cl-Immobilization by Formation of Chlorellestadite

Author:

Ullrich Angela,Garbev Krassimir,Schweike Uwe,Köhler Michael,Bergfeldt Britta,Stemmermann Peter

Abstract

The suitability of CaCl2 as a mineralizing agent in the synthesis of a low-temperature C2S-cement clinker from wastes of autoclaved aerated concrete was investigated. As chlorellestadite is a potential host mineral for the immobilization of chlorine, the formation conditions for the highest joint content of chlorellestadite and C2S were studied in samples with different sulfate contents. Oven experiments were conducted at temperatures between 700 and 1200 °C. The samples were analyzed by X-ray diffraction in combination with chemical and thermal analysis and Raman spectroscopy. Calculation of the yield of C2S and ellestadite for all samples proves the optimum temperature range for the C2S-ellestadite clinker from 950 to 1000 °C. At lower temperatures, the formation of a carbonate-rich halogenide melt promotes the crystallization of a significant amount of spurrite at the expense of C2S. Ellestadite formation mainly depends on the sulfate content and to a lesser extent on the synthesis temperature. However, at higher temperatures, with ternesite another sulfate coexists in sulfate-rich samples at the expense of ellestadite. In addition, distinct evidence for non-stoichiometry and carbonate substitution in the structure of low-temperature ellestadite was found. Low sulfate content leads to the crystallization of Ca10[Si2O7]3Cl2 at higher temperatures. In all samples treated at temperatures above 1000 °C chlorine loss starts. Its extent decreases with increasing sulfate content.

Funder

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference80 articles.

1. High belite cements—Present status and future technological options: Part I

2. Future technological options: Part II

3. Belite-Calciumsulfoaluminate-Ternesite (BCT)-A new low-carbon clinker Technology;Dienemann;Cem. Int.,2013

4. Active low-energy belite cement

5. Belite cements and their activation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3