Abstract
The induced polarization (IP) method plays an important role in the detection of seafloor polymetallic sulfide deposits. Numerical simulations based on the Poisson–Nernst–Planck equation and the Maxwell equation were performed. The effects of mineralized structures on the IP and electrical conductivity properties of seafloor sulfide-bearing rocks were investigated. The results show that total chargeability increases linearly as the volume content of disseminated metal sulfides increases when the volume content is below 20%. However, total chargeability increases nonlinearly with increasing volume content in vein and massive metal sulfides when the volume content is below 30%. The electrical resistivity of disseminated metal sulfides mainly depends on the conductivity of pore water. The electrical resistivity of vein and massive sulfides mainly depends on the volume content and the length of sulfides. Increase in the aspect ratio (0.36 to 0.93) of seafloor massive sulfides causes relaxation time constants and total chargeability to decrease. Relaxation time constants and total chargeability also decrease with increase in the tortuosity of seafloor vein sulfides from 1.0 to 1.38. This study is of great value for the electrical survey of seafloor polymetallic sulfide deposits.
Funder
National Natural Science Foundation of China
COMRA Major Project under contract
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献