Correlation between induced polarization and sulfide content of rock samples obtained from seafloor hydrothermal mounds in the Okinawa Trough, Japan

Author:

Ohta YusukeORCID,Goto Tada-nori,Koike Katsuaki,Kashiwaya Koki,Lin Weiren,Tadai Osamu,Kasaya Takafumi,Kanamatsu Toshiya,Machiyama Hideaki

Abstract

AbstractThe physical properties of seafloor massive sulfides are crucial for interpreting sub-seafloor images from geophysical surveys, shedding light on the evolution of seafloor mineral deposits. While some studies have explored the relationship between electrical properties and the volume of conductive minerals in rocks from seafloor massive sulfide deposits, they primarily focused on artificial samples, leaving the characteristics of natural samples less understood. Moreover, there has been no comprehensive study detailing the general characteristics of electrical properties, particularly chargeability and relaxation time, in relation to the volumetric fraction of sulfides in rocks from massive sulfide mounds in typical hydrothermal areas. In this study, we employed complex conductivity measurements, elemental concentration analysis, and mineral content identification on to rock samples from the active hydrothermal zones of the Okinawa Trough in Japan. The complex conductivity observed was remarkably high, with a pronounced imaginary component and a broad frequency range. This is attributed to induced polarization extending beyond our measurement range. The rock samples were rich in conductive sulfide minerals such as pyrite, chalcopyrite, and galena. Using the Cole–Cole rock physics model, we established a correlation between rock chargeability and relaxation time coefficient with the volume fraction of conductive sulfide minerals, which deviated from previous findings. The intensity of induced polarization was notably higher than anticipated in earlier studies using artificial samples. Furthermore, we observed a distinct positive correlation between the coefficient of relaxation time and the increase in sulfide volume, likely due to the geometric characteristics of the sulfide minerals. Our findings suggest that rocks in massive sulfide mounds may generally construct sulfide clusters that lengthen the conductive path of the electrical carrier. Graphical Abstract

Funder

Japan Society for the Promotion of Science

Cross-ministerial Strategic Innovation Promotion Program

Ministry of Education, Culture, Sports, Science and Technology of Japan

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3