Abstract
A series of numerical simulations were performed to explore the influences of filling level, excitation frequency and amplitude on liquid sloshing by using the open source Computational Fluid Dynamics toolbox OpenFOAM (Open Field Operation and Manipulation), which was fully validated by the experimental data. The results show that the dynamic impact pressure is proportional to the external excitation amplitude only in non-resonance frequency ranges. Pressure-frequency response curves demonstrate a transition process from a ‘soft-spring’ response to a ‘hard-spring’ response following the changes of the filling level. Such a transition process is found to be dominated by the ratio of the filling level to tank length and the critical value can be obtained. It is also found that wave breaking influences the period of sloshing wave in tanks and ultimately alters the resonance frequency from the linear theory.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献