Evaluation of Mechanical and Tribological Aspect of Self-Lubricating Cu-6Gr Composites Reinforced with SiC–WC Hybrid Particles

Author:

Usca Üsame AliORCID,Şap SerhatORCID,Uzun Mahir,Giasin KhaledORCID,Pimenov Danil YurievichORCID

Abstract

Because of their high thermal conductivity, good corrosion resistance, and great mechanical qualities, copper matrix composites are appealing materials utilized in a variety of industries. This study investigates the mechanical properties of copper–graphite (Cu–Gr) matrix composites reinforced with silicon carbide (SiC) and tungsten carbide (WC) particles by hot pressing using powder metallurgy method. The goal is to investigate the influence of the reinforcement ratio on the mechanical characteristics of copper composite materials generated (density, hardness, flexural strength, and wear resistance). SEM, EDS, and X-RD analysis were used to perform metallographic examinations. The highest relative density with a value of 98.558% was determined in the C3 sample. The findings revealed that when the reinforcement ratio was raised, the hardness rose. The highest hardness value was observed in the C6 sample with an increase of 12.52%. Sample C4 (with the lowest SiC and WC particles ratio) had the highest bending stress (233.18 MPa). Bending stress increased by 35.56% compared to the C1 sample. The lowest specific wear rates were found in the C4 sample, with a decrease of 82.57% compared to the C1 sample. The lowest wear rate (6.853 × 10−7 mm3/Nm) also occurred in the C4 sample. The microstructural analysis showed that the hybrid reinforcement particles exhibited a homogeneous distribution in the copper matrix. X-RD analysis showed that there was no intermediate reaction between the parent matrix and the hybrid reinforcements. A good interfacial bond was observed between the matrix structure and the hybrid reinforcements. The motivation of this research was to utilise the advantages of the unique features of SiC–WC hybrid particles to improve the performance of newly developed Cu-6Gr composites for wear-resistance applications.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3