An integrated experimental and analytical approach on mechanical characterization of advanced powder metallurgy aluminium metal matrix composites reinforced with different particulates

Author:

Shetty Sawan,Shetty RavirajORCID,Shetty Navaneet,Hegde AdithyaORCID

Abstract

Abstract Over the last few decades, ‘Discontinuously Reinforced Particulate Composites (DRPCs)’ are a popular class of composite materials with considerable challenge in processing, characterization and machinability because of their increased strength-weight ratio, stiffness, specific strength and oxidization when compared to various metals and their alloys. This paper discusses experimental and numerical investigation on mechanical characteristics of aluminum metal matrix reinforced with various reinforcement particulates such as silicon carbide, aluminium oxide, and zirconium oxide, compaction pressure (kN) and hold time (s) based on Design of Experiments (DOE) and Finite Element Analysis. Initially this paper discusses the process optimization of Aluminum Matrix reinforced with different particulates experimentally to identify the favourable processing conditions by varying reinforcement materials, compaction pressure (kN) and hold time (s) based on TDOE (Taguchi’s Design of Experiments). Further, this paper concentrates to determine ‘maximum principal stress, equivalent elastic strain and equivalent (von-mises) stress’ based on Finite Element Analysis (ANSYS Workbench-2023R1). The results of the experimentation showed that the highest hardness values were achieved with ZrO2 reinforcement material. Increasing the compaction pressure from 8 to 12 kN resulted in a slight decrease in surface roughness and porosity. Higher compaction pressures have assumed to facilitate better particle distribution and improved interfacial bonding, leading to smoother surfaces and lower void content. The simulation results showed that the maximum principal stress achieved were (2235.8 MPa) SiC, (3444.4 MPa) Al2O3, and (3582.5 MPa) ZrO2. The equivalent elastic strain achieved was (0.2488) SiC, (0.2421) Al2O3 and (0.262) ZrO2. The equivalent (Von Mises) stress achieved was (28751 MPa) for SiC, (24880 MPa) for ZrO2 and (26972 MPa) for Al2O3. This experimentation and simulation demonstrated that the PM process can be used to fabricate DRAMMC with different reinforcement particulates. The understanding gained experimentally and analytically from this research can be applied for future processing of Aluminum Matrix Reinforced with different particulates.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3