A New Method for Absolute Pose Estimation with Unknown Focal Length and Radial Distortion

Author:

Guo KaiORCID,Ye Hu,Chen Honglin,Gao Xin

Abstract

Estimating the absolute pose of a camera is one of the key steps for computer vision. In some cases, especially when using a wide-angle or zoom lens, the focal length and radial distortion also need to be considered. Therefore, in this paper, an efficient and robust method for a single solution is proposed to estimate the absolute pose for a camera with unknown focal length and radial distortion, using three 2D–3D point correspondences and known camera position. The problem is decomposed into two sub-problems, which makes the estimation simpler and more efficient. The first sub-problem is to estimate the focal length and radial distortion. An important geometric characteristic of radial distortion, that the orientation of the 2D image point with respect to the center of distortion (i.e., principal point in this paper) under radial distortion is unchanged, is used to solve this sub-problem. The focal length and up to four-order radial distortion can be determined with this geometric characteristic, and it can be applied to multiple distortion models. The values with no radial distortion are used as the initial values, which are close to the global optimal solutions. Then, the sub-problem can be efficiently and accurately solved with the initial values. The second sub-problem is to determine the absolute pose with geometric linear constraints. After estimating the focal length and radial distortion, the undistorted image can be obtained, and then the absolute pose can be efficiently determined from the point correspondences and known camera position using the undistorted image. Experimental results indicate this method’s accuracy and numerical stability for pose estimation with unknown focal length and radial distortion in synthetic data and real images.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference58 articles.

1. Modeling and Calibrating the Distributed Camera;Sweeney,2016

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast pose and focal length estimation for camera using a single point correspondence;Fifteenth International Conference on Graphics and Image Processing (ICGIP 2023);2024-03-25

2. Cognitive Enhancement of Robot Path Planning and Environmental Perception Based on Gmapping Algorithm Optimization;Electronics;2024-02-20

3. 最小配置下相机位姿、焦距及径向畸变鲁棒高效解析方法;Laser & Optoelectronics Progress;2024

4. Analysis of measuring accuracy for planar and non-planar scenes in photogrammetry;Fourteenth International Conference on Graphics and Image Processing (ICGIP 2022);2023-06-27

5. Miss distance estimation using shadow and single view;Fourteenth International Conference on Graphics and Image Processing (ICGIP 2022);2023-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3