Cognitive Enhancement of Robot Path Planning and Environmental Perception Based on Gmapping Algorithm Optimization

Author:

Liu Xintong1,Gong Gu1,Hu Xiaoting1ORCID,Shang Gongyu1,Zhu Hua2

Affiliation:

1. School of Computer Science and Technology, Jiangsu Normal University, Xuzhou 221116, China

2. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

In the logistics warehouse environment, the autonomous navigation and environment perception of the logistics sorting robot are two key challenges. To deal with the complex obstacles and cargo layout in a warehouse, this study focuses on improving the robot perception and navigation system to achieve efficient path planning and safe motion control. For this purpose, a scheme based on an improved Gmapping algorithm is proposed to construct a high-precision map inside a warehouse through the efficient scanning and processing of environmental data by robots. While the improved algorithm effectively integrates sensor data with robot position information to realize the real-time modeling and analysis of warehouse environments. Consequently, the precise mapping results provide a reliable navigation basis for the robot, enabling it to make intelligent path planning and obstacle avoidance decisions in unknown or dynamic environments. The experimental results show that the robot using the improved Gmapping algorithm has high accuracy and robustness in identifying obstacles and an effectively reduced navigation error, thus improving the intelligence level and efficiency of logistics operations. The improved algorithm significantly enhances obstacle detection rates, increasing them by 4.05%. Simultaneously, it successfully reduces map size accuracy errors by 1.4% and angle accuracy errors by 0.5%. Additionally, the accuracy of the robot’s travel distance improves by 2.4%, and the mapping time is reduced by nine seconds. Significant progress has been made in achieving high-precision environmental perception and intelligent navigation, providing reliable technical support and solutions for autonomous operations in logistics warehouses.

Funder

Doctoral Fund for Teachers of Jiangsu Normal University

Jiangsu Province Key Project for Innovation and Entrepreneurship of College Students

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3