A Deconvolutional Deblurring Algorithm Based on Short- and Long-Exposure Images

Author:

Bai Yang,Tan Zheng,Lv Qunbo,Huang Min

Abstract

An iterative image restoration algorithm, directed at the image deblurring problem and based on the concept of long- and short-exposure deblurring, was proposed under the image deconvolution framework by investigating the imaging principle and existing algorithms, thus realizing the restoration of degraded images. The effective priori side information provided by the short-exposure image was utilized to improve the accuracy of kernel estimation, and then increased the effect of image restoration. For the kernel estimation, a priori filtering non-dimensional Gaussianity measure (BID-PFNGM) regularization term was raised, and the fidelity term was corrected using short-exposure image information, thus improving the kernel estimation accuracy. For the image restoration, a P norm-constrained relative gradient regularization term constraint model was put forward, and the restoration result realizing both image edge preservation and texture restoration effects was acquired through the further processing of the model results. The experimental results prove that, in comparison with other algorithms, the proposed algorithm has a better restoration effect.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

1. Digital Image Processing;Gonzalez,2018

2. Comparison of full-aperture interferometry to subaperture stitched interferometry for a large-diameter fast mirror;Catanzaro;Optomech. Des. Eng.,2001

3. Blind Image Deconvolution: Problem regaluration and existing approaches;Bishop;Blind Image Deconvol. Theor. Appl.,2007

4. High-quality motion deblurring from a single image;Qi;Acm Trans. Graph.,2008

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3