A Novel Coupling Mechanism for CSRRs as Near-Field Dielectric Sensors

Author:

Albishi Ali M.ORCID

Abstract

This work proposes a novel coupling mechanism for a complementary split-ring resonator as a planar near-field microwave sensor for dielectric materials. The resonator is etched into the ground plane of a microstrip line. This mechanism is based on the inductive coupling synthesized by utilizing a via that connects the power plane of the microstrip line to the central island of the resonator. The proposed coupling makes the coupling capacitance between the transmission line and the resonator relatively small and insignificant compared to the capacitance of the resonator, making it more sensitive to changes in the dielectric constant of the materials under test. In addition, the coupling is no longer dependent solely on the capacitive coupling, which significantly reduces the coupling degradation caused by loading the resonator with dielectric materials, so the inductive coupling plays an important role in the proposed design. Therefore, the proposed coupling mechanism improves the sensitivity and enhances the coupling between the transmission line and the resonator. The sensor is evaluated for sensitivity, normalized resonance shift, and coupling factor using a full-wave numerical simulation. The sensitivity of the proposed sensor is 12% and 5.6% when detecting dielectric constants of 2 and 10, respectively. Compared to recent studies, the sensitivity improvement when detecting similar permittivity is 20% (1.32 times) and 9.8% (1.1 times). For verification, the proposed sensor is manufactured using PCB technology and is used to detect the presence of two dielectric laminates.

Funder

the Researchers Supporting Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3