Defects Detection Method Based on Programmable Spoof Surface Plasmon Polaritons in Non-Metallic Composites

Author:

Wu Jieping12ORCID,Yang Xiaoqing1,Su Piqiang1,Yu Wenping2ORCID,Zheng Li2

Affiliation:

1. College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China

2. School of Automation and Electrical Engineering, Chengdu Technological University, Chengdu 611730, China

Abstract

Microwave nondestructive testing (NDT) offers promising application prospects due to its advantages of non-contact inspection in detecting defects in non-metallic composites. However, the detection sensitivity of this technology is generally affected by the lift-off effect. To reduce this effect and highly concentrate electromagnetic fields on defects, a defect detection method using scanning instead of moving sensors in the microwave frequency range was proposed. Additionally, a novel sensor based on the programmable spoof surface plasmon polaritons (SSPPs) was designed for non-destructive detection in non-metallic composites. The unit structure of the sensor was made up of a metallic strip and a split ring resonator (SRR). A varactor diode was loaded between the inner and outer rings of the SRR, and by changing the capacitance of this diode using electronic scanning, the field concentration phenomenon of the SSPPs sensor can be moved along a specific direction for defect detection. By using this proposed method and sensor, the location of a defect can be analyzed without moving the sensor. The experimental results demonstrated that the proposed method and designed SSPPs sensor can be effectively applied in detecting defects in non-metallic materials.

Funder

High Tech Ship Research Project of Ministry of Industry and Information Technology

Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory

Sichuan Key Laboratory Project of Artificial Intelligence

Open Research Project of Sichuan Engineering Laboratory

School Level Projects of Chengdu Technological University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3