Super-Resolution of Thermal Images Using an Automatic Total Variation Based Method

Author:

Cascarano Pasquale,Corsini Francesco,Gandolfi StefanoORCID,Piccolomini Elena Loli,Mandanici EmanueleORCID,Tavasci LucaORCID,Zama Fabiana

Abstract

The relatively poor spatial resolution of thermal images is a limitation for many thermal remote sensing applications. A possible solution to mitigate this problem is super-resolution, which should preserve the radiometric content of the original data and should be applied to both the cases where a single image or multiple images of the target surface are available. In this perspective, we propose a new super-resolution algorithm, which can handle either single or multiple images. It is based on a total variation regularization approach and implements a fully automated choice of all the parameters, without any training dataset nor a priori information. Through simulations, the accuracy of the generated super-resolution images was assessed, in terms of both global statistical indicators and analysis of temperature errors at hot and cold spots. The algorithm was tested and applied to aerial and terrestrial thermal images. Results and comparisons with state-of-the-art methods confirmed an excellent compromise between the quality of the high-resolution images obtained and the required computational time.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference39 articles.

1. Building defect detection: External versus internal thermography

2. Uncooled Thermal Camera Calibration and Optimization of the Photogrammetry Process for UAV Applications in Agriculture

3. Geometric Calibration of Thermographic Cameras

4. UltraMax—The Ultimate Resolution https://www.flirmedia.com/flir-instruments/industrial/technical-notes/ultramax-technical-note.html

5. MicroScan Significantly Increases the Geometrical Resolution Capability of the ImageIR Camera Series https://www.ndt.net/search/docs.php3?id=21250&content=1

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3