Performance Comparison of Deep Residual Networks-Based Super Resolution Algorithms Using Thermal Images: Case Study of Crowd Counting

Author:

Rizvi Syed Zeeshan,Farooq Muhammad Umar,Raza Rana Hammad

Abstract

AbstractHumans are able to perceive objects only in the visible spectrum range which limits the perception abilities in poor weather or low illumination conditions. The limitations are usually handled through technological advancements in thermographic imaging. However, thermal cameras have poor spatial resolutions compared to RGB cameras. Super-resolution (SR) techniques are commonly used to improve the overall quality of low-resolution images. There has been a major shift of research among the Computer Vision researchers towards SR techniques particularly aimed for thermal images. This paper analyzes the performance of three deep learning-based state-of-the-art SR algorithms namely Enhanced Deep Super Resolution (EDSR), Residual Channel Attention Network (RCAN) and Residual Dense Network (RDN) on thermal images. The algorithms were trained from scratch for different upscaling factors of ×2 and ×4. The dataset was generated from two different thermal imaging sequences of BU-TIV benchmark. The sequences contain both sparse and highly dense type of crowds with a far field camera view. The trained models were then used to super-resolve unseen test images. The quantitative analysis of the test images was performed using common image quality metrics such as PSNR, SSIM and LPIPS, while qualitative analysis was provided by evaluating effectiveness of the algorithms for crowd counting application. After only 54 and 51 epochs of RCAN and RDN respectively, both approaches were able to output average scores of 37.878, 0.986, 0.0098 and 30.175, 0.945, 0.0636 for PSNR, SSIM and LPIPS respectively. The EDSR algorithm took the least computation time during both training and testing because of its simple architecture. This research proves that a reasonable accuracy can be achieved with fewer training epochs when an application-specific dataset is carefully selected.

Publisher

Springer International Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3