High-Shear Granulation of Hygroscopic Probiotic-Encapsulated Skim Milk Powder: Effects of Moisture-Activation and Resistant Maltodextrin

Author:

Letona Andres1ORCID,Ahn Sungahm2ORCID,An Suyeon2,Yun Daebeom2,Kim Young-Rok3ORCID,Muralles Mario4,Chung Donghwa125ORCID

Affiliation:

1. Institute of Food Industrialization, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea

2. Food Technology Major, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea

3. Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea

4. School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

5. Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea

Abstract

A fine, hygroscopic, and poorly flowable probiotic powder encapsulating Lactobacillus rhamnosus GG (LGG) was granulated using a high-shear granulation process, wherein a small amount of water (4%, w/w) was used for moisture-activation with or without 10% (w/w) resistant maltodextrin (RM). The process consisted of four steps; premixing, agglomeration, moisture absorption, and drying steps. The moisture content, water activity, and viable cell count were monitored during the granulation. The size, morphology, and flowability of the granules were determined. The powder was successfully converted to about 10-times-larger granules (mass mean diameter = 162–204 µm) by this process, and the granules had a ‘snowball’ morphology. The LGG cells were well preserved under the high-shear granulation conditions, and the viable cell count of the granules greatly exceeded the minimum therapeutic level recommended for probiotic powders. The addition of RM decreased the moisture content of the granules; improved cell resistance to drying stress; narrowed the particle size distribution, with reductions seen in both very fine and very large particles; and produced more flowable granules. Moisture sorption analysis and differential scanning calorimetry demonstrated that these positive effects of RM on granulation were primarily attributed to its water distribution ability rather than its glass transition-related binding ability.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3