Theoretical Study of Some Angle Parameter Trigonometric Copulas

Author:

Chesneau Christophe

Abstract

Copulas are important probabilistic tools to model and interpret the correlations of measures involved in real or experimental phenomena. The versatility of these phenomena implies the need for diverse copulas. In this article, we describe and investigate theoretically new two-dimensional copulas based on trigonometric functions modulated by a tuning angle parameter. The independence copula is, thus, extended in an original manner. Conceptually, the proposed trigonometric copulas are ideal for modeling correlations into periodic, circular, or seasonal phenomena. We examine their qualities, such as various symmetry properties, quadrant dependence properties, possible Archimedean nature, copula ordering, tail dependences, diverse correlations (medial, Spearman, and Kendall), and two-dimensional distribution generation. The proposed copulas are fleshed out in terms of data generation and inference. The theoretical findings are supplemented by some graphical and numerical work. The main results are proved using two-dimensional inequality techniques that can be used for other copula purposes.

Publisher

MDPI AG

Subject

Multidisciplinary

Reference25 articles.

1. An Introduction to Copulas;Nelsen,2006

2. Principles of Copula Theory;Durante,2016

3. Analysis of Survival Data with Dependent Censoring, Copula-Based Approaches;Emura,2018

4. Dependence Modeling with Copulas;Joe,2015

5. New Families of Copulas Based on Periodic Functions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3