Molecular Dynamics Simulations Correlating Mechanical Property Changes of Alumina with Atomic Voids under Triaxial Tension Loading

Author:

Chang Junhao1,Chen Zengtao1ORCID,Hogan James D.1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada

Abstract

The functionalization of nanoporous ceramics for applications in healthcare and defence necessitates the study of the effects of geometric structures on their fundamental mechanical properties. However, there is a lack of research on their stiffness and fracture strength along diverse directions under multi-axial loading conditions, particularly with the existence of typical voids in the models. In this study, accurate atomic models and corresponding properties were meticulously selected and validated for further investigation. Comparisons were made between typical material geometric and elastic properties with measured results to ensure the reliability of the selected models. The mechanical behavior of nanoporous alumina under multiaxial stretching was explored through molecular dynamics simulations. The results indicated that the stiffness of nanoporous alumina ceramics under uniaxial tension was greater, while the fracture strength was lower compared to that under multiaxial loading. The fracture of nanoporous ceramics under multi-axial stretching, was mainly dominated by void and crack extension, atomic bond fracture, and cracking with different orientations. Furthermore, the effects of increasing strain rates on the void volume fraction were found to be similar across different initial radii. It was also found that the increasing tension loading rates had greater effects on decreasing the fracture strain. These findings provide additional insight into the fracture mechanisms of nanoporous ceramics under complex loading states, which can also contribute to the development of higher-scale models in the future.

Funder

China Scholarship Council

Publisher

MDPI AG

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3