Temperature-Dependent Elastic Properties of B4C from First-Principles Calculations and Phonon Modeling

Author:

Sheikhi Sara1,Stroberg Wylie1ORCID,Hogan James D.1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada

Abstract

Boron carbide plays a crucial role in various extreme environment applications, including thermal barrier coatings, aerospace applications, and neutron absorbers, because of its high thermal and chemical stability. In this study, the temperature-dependent elastic stiffness constants, thermal expansion coefficient, Helmholtz free energy, entropy, and heat capacity at a constant volume (Cv) of rhombohedral B4C have been predicted using a quasi-harmonic approach. A combination of volume-dependent first-principles calculations (density functional theory) and first-principles phonon calculations in the supercell framework has been performed. Good agreement between the elastic constants and structural parameters from static calculations is observed. The calculated thermodynamic properties from phonon calculations show trends that align with the literature. As the temperature rises, the predicted free energy follows a decreasing trend, while entropy and Cv follow increasing trends with temperature. Comparisons between the predicted room temperature thermal expansion coefficient (TEC) (7.54×10−6 K−1) and bulk modulus (228 GPa) from the quasi-harmonic approach and literature results from experiments and models are performed, revealing that the calculated TEC and bulk modulus fall within the established range from the limited set of data from the literature (TEC = 5.73–9.50 ×10−6 K−1, B = 221–246 GPa). Temperature-dependent Cijs are predicted, enabling stress analysis at elevated temperatures. Overall, the outcomes of this study can be used when performing mechanical and thermal stress analysis (e.g., space shielding applications) and optimizing the design of boron carbide materials for elevated temperature applications.

Funder

the Natural Sciences and Engineering Research Council of Canada Discovery Grant

the George Ford Chair in Materials Engineering

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3