Derivation of Cyclic Stiffness and Strength Degradation Curves of Sands through Discrete Element Modelling

Author:

Maksimov Fedor,Tombari AlessandroORCID

Abstract

Cyclic degradation in fully saturated sands is a liquefaction phenomenon characterized by the progressive variation of the soil strength and stiffness that occurs when the soil is subjected to cyclic loading in undrained conditions. An evaluation of the relationships between the degradation of the soil properties and the number of loading cycles is essential for deriving advanced cyclic constitutive soil models. Generally, the calibration of cyclic damage models can be performed through controlled laboratory tests, such as cyclic triaxial testing. However, the undrained response of soils is dependent on several factors, such as the fabric, sample preparation, initial density, initial stress state, and stress path during loading; hence, a large number of tests would be required. On the other hand, the Discrete Element Method offers an interesting approach to simulating the complex behavior of an assembly of particles, which can be used to perform simulations of geotechnical laboratory testing. In this paper, numerical triaxial analyses of sands with different consistencies, loose and medium-dense states, were performed. First, static triaxial testing was performed to characterize the sand properties and validate the results with the literature data. Then, cyclic undrained triaxial testing was performed to investigate the impact of the number of cycles on the cyclic degradation of the soil stiffness and strength. Laws that can be used in damage soil models were derived.

Publisher

MDPI AG

Subject

Multidisciplinary

Reference49 articles.

1. Impact of ground motion duration and soil non-linearity on the seismic performance of single piles;Soil Dyn. Earthq. Eng.,2017

2. A consistent soil fatigue framework based on the number of equivalent cycles;Geotech. Geol. Eng.,2007

3. National Academies of Sciences, Engineering, and Medicine (2021). State of the Art and Practice in the Assessment of Earthquake-Induced Soil Liquefaction and Its Consequences, The National Academies Press.

4. Formulation of a sand plasticity plane-strain model for earthquake engineering applications;Soil Dyn. Earthq. Eng.,2013

5. Liquefaction and deformation analyses using a total stress approach;J. Geotech. Geoenvironmental Eng.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3