Numerical Study on the Vibratory Compaction Mechanism of the Sand-Gabion Backfills in Underground Coal Mines

Author:

Zhang Zhiyi,Wang Wei,Zhao Bo

Abstract

Coal mine backfilling can effectively prevent large-scale movement of rock formations, not only improving the overall production capacity of the mine but also protecting the surface from destruction and maintaining the original ecological environment. Backfilling extent and backfills compactness are two factors determining the supporting effect on the overburdens in underground coal mines. To make full use of the aeolian sand as the backfill materials in underground coal mines in the desertification areas, Northwest China. Then, vibratory compaction was proposed to enlarge the compactness of these sand-gabion backfills by considering the limited working space. After that, the movement law of the sand particles during vibratory compaction, the influencing law of the vibratory parameters, and the gabion constraint on the ultimate compactness of the sand-gabion backfills were studied using the discrete element software PFC3D from the microscopic point of view. It was found that the aeolian sand particles are more likely to inter-squeeze under vibration than under static load. Furthermore, there are a series of optimal vibratory compaction parameters to the inner aeolian sand for each external gabion constraint strength. The optimal vibration parameters were frequency 50 HZ, excitation force 0.3 MPa, amplitude 40 KPa, and vibration time 4 s. Conclusions of this study can provide references for enlarging the compactness of the sand-gabion backfills in the underground goaf in the desertification area of Northwest China.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3