Effects of Chemical Short-Range Order and Temperature on Basic Structure Parameters and Stacking Fault Energies in Multi-Principal Element Alloys

Author:

Mubassira Subah1,Jian Wu-Rong2,Xu Shuozhi1ORCID

Affiliation:

1. School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73071, USA

2. Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA

Abstract

In the realm of advanced material science, multi-principal element alloys (MPEAs) have emerged as a focal point due to their exceptional mechanical properties and adaptability for high-performance applications. This study embarks on an extensive investigation of four MPEAs—CoCrNi, MoNbTa, HfNbTaTiZr, and HfMoNbTaTi—alongside key pure metals (Mo, Nb, Ta, Ni) to unveil their structural and mechanical characteristics. Utilizing a blend of molecular statics and hybrid molecular dynamics/Monte Carlo simulations, the research delves into the impact of chemical short-range order (CSRO) and thermal effects on the fundamental structural parameters and stacking fault energies in these alloys. The study systematically analyzes quantities such as lattice parameters, elastic constants (C11, C12, and C44), and generalized stacking fault energies (GSFEs) across two distinct structures: random and CSRO. These properties are then evaluated at diverse temperatures (0, 300, 600, 900, 1200 K), offering a comprehensive understanding of temperature’s influence on material behavior. For CSRO, CoCrNi was annealed at 350 K and MoNbTa at 300 K, while both HfMoNbTaTi and HfNbTaTiZr were annealed at 300 K, 600 K, and 900 K, respectively. The results indicate that the lattice parameter increases with temperature, reflecting typical thermal expansion behavior. In contrast, both elastic constants and GSFE decrease with rising temperature, suggesting a reduction in resistance to stability and dislocation motion as thermal agitation intensifies. Notably, MPEAs with CSRO structures exhibit higher stiffness and GSFEs compared to their randomly structured counterparts, demonstrating the significant role of atomic ordering in enhancing material strength.

Funder

Research Council of the University of Oklahoma (OU) Norman Campus

Gallogly College of Engineering at OU

OU

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3