Performance of Concrete Confined with a Jute–Polyester Hybrid Fiber Reinforced Polymer Composite: A Novel Strengthening Technique

Author:

Wahab ,Srinophakun ,Hussain ,Chaimahawan

Abstract

The strengthening and rehabilitation of concrete members is an important issue which arises worldwide. Carbon, aramid and glass fiber reinforced polymer (FRP) composites are mainly used for strengthening and rehabilitation. However, its use is limited on a small scale because of its high price, lack of availability and environmental impacts. The solution of this issue gives rise to the use of locally available natural fibers and low-cost synthetic fibers. This paper presents the experimental and analytical results of circular and square concrete columns confined with jute–polyester hybrid FRP composites. The main objective of this study is to evaluate the viability and performance of concrete confined with the hybridization of jute and polyester (FRP) composite sheets to utilize its superior properties. A novel hybrid technique has been applied for the wrapping of fiber sheets. The fiber sheets were applied in such a way that a uniform bond between the inner and outer layer was achieved. A total of 32 plain, standard size circular and square concrete specimens, externally wrapped with a jute–polyester FRP (JPFRP) composite, were tested under monotonic axial compressive loads. The result shows that JPFRP confinement increased the strength, strain and ductility index ranged between 1.24 and 2.61, 1.38 and 8.97, and 4.94 and 26.5 times the un-jacketed specimen, respectively. Furthermore, the wrapping has a significant effect on the low-strength specimens, having a circular cross-section. For high strength specimens, the post-peak stress-strain behavior was dominated by the outer polyester jacket because of its large rupture strain. Additionally, the test results were used to evaluate the existing strength-strain models derived for conventional FRPs. The models predicted values either underestimating or overestimating the compressive strength and strain of JPFRP-confined specimens. However, the strength models performed better than the strain models. The JPFRP wrapping significantly enhanced the strength, fracture energy, ductility index, and post-peak response. Therefore, JPFRP confinement can be used for a small-scale application, where little strength and high ductility is demanded. Moreover, it can be used to prevent the peeling of the concrete cover and moisture penetration into the concrete.

Funder

Faculty of Engineering, Kasetsart University

Publisher

MDPI AG

Subject

Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3