Axial Compressive Behavior of CFRP and MWCNT Incorporated GFRP Confined Concrete Cylinders after Exposure to Various Aggressive Environments

Author:

Kavitha Sruthi Sreekumar12ORCID,Madhavan Mini K.3ORCID,Jayanarayanan Karingamanna12ORCID,Sarker Prabir Kumar4ORCID

Affiliation:

1. Department of Chemical Engineering and Materials Science, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India

2. Center of Excellence in Advanced Materials and Green Technologies (CoE-AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India

3. Department of Civil Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India

4. Civil Engineering Discipline, School of Civil and Mechanical Engineering, Curtin University, Perth, WA 6102, Australia

Abstract

Fiber-reinforced polymer confinement is considered to be effective in the retrofitting of concrete structures. The current study explores the effectiveness of one- and two-layer carbon fiber reinforced polymer (CFRP) and multiwalled carbon nanotube (MWCNT) incorporated three-layer glass fiber reinforced polymer (GFRP) confinement on concrete cylinders under aggressive exposures, such as acid, alkaline, marine, water, and elevated temperatures. At 1 wt.% MWCNT by weight of the epoxy matrix, mechanical characteristics of the laminate show a significant improvement. In the case of acid exposure, the axial load-carrying capacity of concrete specimens with single-layer CFRP confinement was equal to that of MWCNT incorporated three-layer GFRP confinement (GF3C1-AC). The axial strain of GF3C1-AC was 23% and 12% higher than one and two-layer CFRP confinement. After exposure at 400 °C, in comparison with one- and two-layer CFRP confinement, the axial strain of MWCNT incorporated three-layer GFRP confined specimens increased by 50% and 20%, respectively, which proved the efficacy of MWCNT as a heat-resistant nanofiller. The ultrasonic pulse velocity (UPV) test indicates that the confinement system protects the concrete core from sudden failure by impeding crack propagation. The test results proved that the MWCNT incorporated FRP system can be considered as a prospective substitute for CFRP systems for retrofitting applications in severe environmental conditions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3