NB-LRRs Not Responding Consecutively to Fusarium oxysporum Proliferation Caused Replant Disease Formation of Rehmannia glutinosa

Author:

Chen AiguoORCID,Gu LiORCID,Xu Na,Feng Fajie,Chen Dexin,Yang Chuyun,Zhang Bao,Li Mingjie,Zhang Zhongyi

Abstract

Consecutive monoculture practice facilitates enrichment of rhizosphere pathogenic microorganisms and eventually leads to the emergence of replant disease. However, little is known about the interaction relationship among pathogens enriched in rhizosphere soils, Nucleotide binding-leucine-rich repeats (NB-LRR) receptors that specifically recognize pathogens in effector-triggered immunity (ETI) and physiological indicators under replant disease stress in Rehmannia glutinosa. In this study, a controlled experiment was performed using different kinds of soils from sites never planted R. glutinosa (NP), replanted R. glutinosa (TP) and mixed by different ration of TP soils (1/3TP and 2/3TP), respectively. As a result, different levels of TP significantly promoted the proliferation of Fusarium oxysporum f.sp. R. glutinosa (FO). Simultaneously, a comparison between FO numbers and NB-LRR expressions indicated that NB-LRRs were not consecutively responsive to the FO proliferation at transcriptional levels. Further analysis found that NB-LRRs responded to FO invasion with a typical phenomenon of “promotion in low concentration and suppression in high concentration”, and 6 NB-LRRs were identified as candidates for responding R. glutinosa replant disease. Furthermore, four critical hormones of salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA) had higher levels in 1/3TP, 2/3TP and TP than those in NP. Additionally, increasing extents of SA contents have significantly negative trends with FO changes, which implied that SA might be inhibited by FO in replanted R. glutinosa. Concomitantly, the physiological indexes reacted alters of cellular process regulated by NB-LRR were affected by complex replant disease stresses and exhibited strong fluctuations, leading to the death of R. glutinosa. These findings provide important insights and clues into further revealing the mechanism of R. glutinosa replant disease.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Fujian Province of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3