Artificial Intelligence Search Strategies for Autonomous Underwater Vehicles Applied for Submarine Groundwater Discharge Site Investigation

Author:

Tholen ChristophORCID,El-Mihoub Tarek A.,Nolle Lars,Zielinski OliverORCID

Abstract

In this study, a set of different search strategies for locating submarine groundwater discharge (SGD) are investigated. This set includes pre-defined path planning (PPP), adapted random walk (RW), particle swarm optimisation (PSO), inertia Levy-flight (ILF), self-organising-migration-algorithm (SOMA), and bumblebee search algorithm (BB). The influences of self-localisation and communication errors and limited travel distance of the autonomous underwater vehicles (AUVs) on the performance of the proposed algorithms are investigated. This study shows that the proposed search strategies could not outperform the classic search heuristic based on full coverage path planning if all AUVs followed the same search strategy. In this study, the influence of self-localisation and communication errors was investigated. The simulations showed that, based on the median error of the search runs, the performance of SOMA was in the same order of magnitude regardless the strength of the localisation error. Furthermore, it was shown that the performance of BB was highly affected by increasing localisation errors. From the simulations, it was revealed that all the algorithms, except for PSO and SOMA, were unaffected by disturbed communications. Here, the best performance was shown by PPP, followed by BB, SOMA, ILF, PSO, and RW. Furthermore, the influence of the limited travel distances of the AUVs on the search performance was evaluated. It was shown that all the algorithms, except for PSO, were affected by the shorter maximum travel distances of the AUVs. The performance of PPP increased with increasing maximum travel distances. However, for maximum travel distances > 1800 m the median error appeared constant. The effect of shorter travel distances on SOMA was smaller than on PPP. For maximum travel distances < 1200 m, SOMA outperformed all other strategies. In addition, it can be observed that only BB showed better performances for shorter travel distances than for longer ones. On the other hand, with different search strategies for each AUV, the search performance of the whole swarm can be improved by incorporating population-based search strategies such as PSO and SOMA within the PPP scheme. The best performance was achieved for the combination of two AUVs following PPP, while the third AUV utilised PSO. The best fitness of this combination was 15.9. This fitness was 26.4% better than the performance of PPP, which was 20.4 on average. In addition, a novel mechanism for dynamically selecting a search strategy for an AUV is proposed. This mechanism is based on fuzzy logic. This dynamic approach is able to perform at least as well as PPP and SOMA for different travel distances of AUVs. However, due to the better adaptation to the current situation, the overall performance, calculated based on the fitness achieved for different maximum travel distances, the proposed dynamic search strategy selection performed 32.8% better than PPP and 34.0% better than SOMA.

Funder

Volkswagen Foundation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3