Author:
Cho Se,Baek Na,Kim Min,Koo Ja,Kim Jong,Park Kang
Abstract
Conventional nighttime face detection studies mostly use near-infrared (NIR) light cameras or thermal cameras, which are robust to environmental illumination variation and low illumination. However, for the NIR camera, it is difficult to adjust the intensity and angle of the additional NIR illuminator according to its distance from an object. As for the thermal camera, it is expensive to use as a surveillance camera. For these reasons, we propose a nighttime face detection method based on deep learning using a single visible-light camera. In a long-distance night image, it is difficult to detect faces directly from the entire image due to noise and image blur. Therefore, we propose Two-Step Faster region-based convolutional neural network (R-CNN) based on the image preprocessed by histogram equalization (HE). As a two-step scheme, our method sequentially performs the detectors of body and face areas, and locates the face inside a limited body area. By using our two-step method, the processing time by Faster R-CNN can be reduced while maintaining the accuracy of face detection by Faster R-CNN. Using a self-constructed database called Dongguk Nighttime Face Detection database (DNFD-DB1) and an open database of Fudan University, we proved that the proposed method performs better compared to other existing face detectors. In addition, the proposed Two-Step Faster R-CNN outperformed single Faster R-CNN and our method with HE showed higher accuracies than those without our preprocessing in nighttime face detection.
Funder
National Research Foundation of Korea
Institute for Information and communications Technology Promotion
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference63 articles.
1. Face detection in real time based on HOG;Rekha;Int. J. Adv. Res. Comput. Eng. Technol.,2014
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献