Improving Accuracy of Face Recognition in the Era of Mask-Wearing: An Evaluation of a Pareto-Optimized FaceNet Model with Data Preprocessing Techniques

Author:

Akingbesote Damilola1,Zhan Ying1,Maskeliūnas Rytis2ORCID,Damaševičius Robertas2ORCID

Affiliation:

1. Department of Multimedia Engineering, Faculty of Informatics, Kaunas University of Technology, 51368 Kaunas, Lithuania

2. Center of Excellence Forest 4.0, Faculty of Informatics, Kaunas University of Technology, 51368 Kaunas, Lithuania

Abstract

The paper presents an evaluation of a Pareto-optimized FaceNet model with data preprocessing techniques to improve the accuracy of face recognition in the era of mask-wearing. The COVID-19 pandemic has led to an increase in mask-wearing, which poses a challenge for face recognition systems. The proposed model uses Pareto optimization to balance accuracy and computation time, and data preprocessing techniques to address the issue of masked faces. The evaluation results demonstrate that the model achieves high accuracy on both masked and unmasked faces, outperforming existing models in the literature. The findings of this study have implications for improving the performance of face recognition systems in real-world scenarios where mask-wearing is prevalent. The results of this study show that the Pareto optimization allowed improving the overall accuracy over the 94% achieved by the original FaceNet variant, which also performed similarly to the ArcFace model during testing. Furthermore, a Pareto-optimized model no longer has a limitation of the model size and is much smaller and more efficient version than the original FaceNet and derivatives, helping to reduce its inference time and making it more practical for use in real-life applications.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Facial Feature-Based Microsleep Detection with High Precision Using Deep Learning;2023 15th International Conference on Software, Knowledge, Information Management and Applications (SKIMA);2023-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3