Optimizing Battery Energy Storage System Data in the Presence of Wind Power Plants: A Comparative Study on Evolutionary Algorithms

Author:

Sakipour Ramin,Abdi Hamdi

Abstract

This study deals with the optimization of battery energy storage system (BESS) data in terms of significant characteristics of life and efficiency, and their positive impacts on power system efficiency in the presence of wind power plants in a microgrid. To this end, a permanent magnet synchronous generator (PMSG) is used to convert the wind energy by connecting a three-phase dynamic load to the grid. The main novelty of the proposed method is designing a smart backup battery branch to improve the efficiency of the wind farm by maintaining the operating constraints even during the occurrence of harsh faults in the generation section. Additionally, for the first time, the characteristics of the BESS are optimized using nine evolutionary algorithms, including the genetic algorithm (GA), teaching–learning-based optimization (TLBO), particle swarm optimization (PSO), gravitational search algorithm (GSA), artificial bee colony (ABC), differential evolution (DE), grey wolf optimizer (GWO), moth–flame optimization algorithm (MFO), and sine cosine algorithm (SCA), and the results are compared with each other. The simulation results of a case study confirm the robustness of the proposed control strategy for the BESS.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference40 articles.

1. Wind Energy Meteorology: Atmospheric Physics for Wind Power Generation;Emeis,2018

2. Motor drives;Rahman,2018

3. Division-Summation Current Control and One-Cycle Voltage Regulation of the Surface-Mounted Permanent-Magnet Synchronous Generator

4. Design of Permanent Magnet Synchronous Generator for Wind Energy Conversion System;Sahu,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3