The Significance of Considering Battery Service-Lifetime for Correctly Sizing Hybrid PV–Diesel Energy Systems

Author:

Omar Moien A.1ORCID

Affiliation:

1. Electrical Engineering Department, An-Najah National University, Nablus P.O. Box 7, Palestine

Abstract

This study emphasizes how crucial it is to consider battery service lifetime when determining the optimal battery size in PV–diesel hybrid systems. It investigates how battery size influences the evaluation of hybrid systems and their lifetime due to battery cycling. Unlike previous research that relies on assumed battery lifetimes, this study delves into the tangible impact of battery cycling, revealing the intricate relationship between battery size, cycling behavior, and service lifetime. Utilizing HOMER Pro version 3.14.2 software, a case study assessed three battery capacities (300 Ah, 800 Ah, and 1000 Ah) in a hybrid PV system catering to a 24 kWh daily demand. Across varying assumed lifetimes (5, 10, and 20 years), the study found that a 300 Ah battery was the most feasible under a 5-year assumed battery lifetime. However, for 10-year and 20-year battery lifetimes, the 800 Ah system emerged as the optimal choice, emphasizing the influence of assumed lifetime on determining the optimal battery size. Throughput battery lifetime analysis estimated service lifetimes of 4.9, 10.96, and 13.64 years for the 300 Ah, 800 Ah, and 1000 Ah batteries, respectively. Notably, smaller-rated batteries exhibited shorter estimated service lifetimes linked to usage patterns. Among the systems assuming a 20-year calendar lifetime, the optimal 800 Ah system, with a service lifetime of 10.96 years, yielded an energy cost of 0.312 USD/kWh, annual costs of USD 2736.5, and a total cost of USD 37,450. Considering service lifetime, the 800 Ah system emerged as optimal, contrasting the initially favored 300 Ah system under a 5-year assumed lifetime. This underscores the crucial significance of comprehending and integrating service lifetime considerations to optimize the economic feasibility of PV hybrid systems.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference34 articles.

1. Optimal techno-economic design of hybrid PV/wind system comprising battery energy storage: Case study for a remote area;Emad;Energy Convers. Manag.,2021

2. Hybrid off-grid renewable power system for sustainable rural electrification in Benin;Odou;Renew. Energy,2020

3. A techno-economic comparative study of renewable energy systems based different storage devices;Falama;Energy,2023

4. A Review of Hybrid Renewable Energy Systems: Architectures, Battery Systems, and Optimization Techniques;Eng,2023

5. Optimization of an off-grid PV/biogas/battery hybrid energy system for electrification: A case study in a commercial platform in Morocco;Ennemiri;Energy Convers. Manag. X,2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3