Four Unity/Variable Gain First-Order Cascaded Voltage-Mode All-Pass Filters and Their Fully Uncoupled Quadrature Sinusoidal Oscillator Applications

Author:

Chen Hua-PinORCID,Wang San-Fu,Ku YitsenORCID,Yi Yuan-Cheng,Li Yi-Fang,Chen Yu-Hsi

Abstract

This paper presents four new designs for a first-order voltage-mode (VM) all-pass filter (APF) circuit based on two single-output positive differential voltage current conveyors (DVCCs). The first two proposed VMAPFs with unity-gain, high-input (HI) impedance and low-output (LO) impedance use two DVCCs, a grounded capacitor, and a grounded resistor. The last two proposed first-order VMAPFs with HI impedance and variable-gain control are two resistors added to each of the first two VMAPFs. The last two proposed first-order VMAPFs with variable-gain control use two DVCCs, one grounded capacitor, and three grounded resistors and provide HI impedances, so that VMAPFs can be directly cascaded to obtain high-order filters without additional voltage buffers. The four implementation circuits based only on grounded passive components are particularly applicable for integrated circuits (ICs). To confirm the cascading characteristics, an application example of a fully-uncoupled quadrature sinusoidal oscillator (FQSO) is also proposed. PSpice simulation results have confirmed the feasibility of the proposed structures. VMAPF and FQSO circuits are also constructed from commercial AD8130 and AD844 ICs, and their experimentally measured time and frequency responses are compared to theoretical values. The supply voltages for both the AD8130 and AD844 ICs were ±5 V. The measured power dissipation of the proposed first-order VMAPF and second-order FQSO circuits is 0.6 W. The measured input 1-dB compression point for the four VMAPFs is about 19 dB. The measured total harmonic distortion of the four VMAPFs is less than 0.67% when the input voltage reaches 2.5 Vpp. The calculated figures of merit for the four VMAPFs are 628.2 × 103, 603.06 × 103, 516.53 × 103, and 496.42 × 103, respectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3