Synthesis of High-Input Impedance Electronically Tunable Voltage-Mode Second-Order Low-Pass, Band-Pass, and High-Pass Filters Based on LT1228 Integrated Circuits

Author:

Chen Hua-PinORCID,Chen Shih-Jun,Chang Chih-Yang

Abstract

This paper introduces two new high-input impedance electronically tunable voltage-mode (VM) multifunction second-order architectures with band-pass (BP), low-pass (LP), and high-pass (HP) filters. Both proposed architectures have one input and five outputs, implemented employing three commercial LT1228 integrated circuits (ICs), two grounded capacitors, and five resistors. Both proposed architectures also feature one high-impedance input port and three low-impedance output ports for easy connection to other VM configurations without the need for VM buffers. The two proposed VM LT1228-based second-order multifunction filters simultaneously provide BP, LP, and HP filter transfer functions at Vo1, Vo2, and Vo3 output terminals. The pole angular frequencies and the quality factors of the two proposed VM LT1228-based second-order multifunction filters can be electronically and orthogonally adjusted by the bias currents from their corresponding commercial LT1228 ICs, and can be independently adjusted in special cases. In addition, both proposed VM LT1228-based second-order multifunction filters have two independent gain-controlled BP and LP filter transfer functions at Vo4 and Vo5 output terminals, respectively. Based on the three commercial LT1228 ICs and several passive components, simulations and experimental measurements are provided to verify the theoretical predictions and demonstrate the performance of the two proposed high-input impedance electronically tunable VM LT1228-based second-order multifunction filters. The measured input 1-dB power gain compression point (P1dB), third-order IMD (IMD3), third-order intercept (TOI) point, and spurious-free dynamic range (SFDR) of the first proposed filter were −7.1 dBm, −48.84 dBc, 4.133 dBm, and 45.02 dBc, respectively. The measured input P1dB, IMD3, TOI, and SFDR of the second proposed filter were −7 dBm, −49.65 dBc, 4.316 dBm, and 45.88 dBc, respectively. Both proposed filters use a topology synthesis method based on the VM second-order non-inverting/inverting HP filter transfer functions to generate the BP, LP and HP filter transfer functions simultaneously, making them suitable for applications in three-way crossover networks.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3