Analysis of Small Sea-Surface Targets Detection Performance According to Airborne Radar Parameters in Abnormal Weather Environments

Author:

Bounaceur Hamza,Khenchaf AliORCID,Le Caillec Jean-Marc

Abstract

Along with the rapid development of marine radar, and particularly those carried on aircraft, the detection of small-sized targets which pose an increasing threat has become one of the main areas of interest. However, by considering an observation chain from an aircraft (such as a drone) in a maritime environment, with the aim of detecting and tracking of low signal-to-clutter ratio (SCR) targets, one of the important points would be the analysis of the radar system performance according to the radar input parameters, the atmospheric propagation medium, the various sea clutter characterization, and the type of targets (RCS, speed, etc.) in this environment. Therefore, it is necessary to obtain the overall path loss including the anomalous atmospheric environment, gas attenuation, clouds attenuation, rainfall attenuation, and beam scanning loss. To consider atmospheric attenuations, ITU-R models are used. On another side, because of spikes and dynamic variation properties, sea clutter is generally described by the statistical distribution with long tail and by its wider Doppler spectrum. Conventional algorithms such as those based on statistical models, MTI, and MTD processing are often limited, especially for the target of low speed and low RCS. Therefore, sea clutter, including empirical and statistical models available, is considered to estimate and simulate the impact of radar input parameters, targets RCS, and sea state on detection performance. The Doppler frequency of target echo which can be exploited for coherent processing is described by assuming an adequate scenario of observation geometry.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3