Reducing the Uncertainty of Radiata Pine Site Index Maps Using an Spatial Ensemble of Machine Learning Models

Author:

Gavilán-Acuña GonzaloORCID,Olmedo Guillermo FedericoORCID,Mena-Quijada PabloORCID,Guevara MarioORCID,Barría-Knopf Beatriz,Watt Michael S.ORCID

Abstract

Site Index has been widely used as an age normalised metric in order to account for variation in forest height at a range of spatial scales. Although previous research has used a range of modelling methods to describe the regional variation in Site Index, little research has examined gains that can be achieved through the use of regression kriging or spatial ensemble methods. In this study, an extensive set of environmental surfaces were used as covariates to predict Site Index measurements covering the environmental range of Pinus radiata D. Don plantations in Chile. Using this dataset, the objectives of this research were to (i) compare predictive precision of a range of geostatistical, parametric, and non-parametric models, (ii) determine whether significant gains in precision can be attained through use of regression kriging, (iii) evaluate the precision of a spatial ensemble model that utilises predictions from the five most precise models, through using the model prediction with lowest error for a given pixel, and (iv) produce a map of Site Index across the study area. The five most precise models were all geostatistical and they included ordinary kriging and four regression kriging models that were based on partial least squares or random forests. A spatial ensemble model that was constructed from these five models was the most precise of those developed (RMSE = 1.851 m, RMSE% = 6.38%) and it had relatively little bias. Climatic and edaphic variables were the strongest determinants of Site Index and, in particular, variables that are related to soil water balance were well represented within the most precise predictive models. These results highlight the utility of predicting Site Index using a range of approaches, as these can be used to construct a spatial ensemble that may be more precise than predictions from the constituent models.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3