Detecting the Short-Term Effects of Water Stress on Radiata Pine Physiology Using Thermal Imagery

Author:

Watt Michael S.1ORCID,de Silva Dilshan2,Estarija Honey Jane C.3,Yorston Warren3,Massam Peter3

Affiliation:

1. Scion, 10 Kyle Street, Christchurch 8011, New Zealand

2. Waikato Regional Council, 160 Ward Street, Hamilton 3204, New Zealand

3. Scion, 49 Sala Street, Rotorua 3046, New Zealand

Abstract

Despite the utility of thermal imagery for characterising the impacts of water stress on plant physiology, few studies have been undertaken on plantation-grown conifers, including the most widely planted exotic species, radiata pine. Using data collected from a pot trial, where water was withheld from radiata pine over a nine-day period, the objectives of this study were to (i) determine how rapidly key physiological traits change in response to water stress and (ii) assess the utility of normalised canopy temperature, defined as canopy temperature–air temperature (Tc–Ta), for detecting these physiological changes. Volumetric water content remained high in the well-watered control treatment over the course of the experiment (0.47–0.48 m3 m−3) but declined rapidly in the water stress treatment from 0.47 m3 m−3 at 0 days after treatment (DAT) to 0.04 m3 m−3 at 9 DAT. There were no significant treatment differences in measurements taken at 0 DAT for Tc–Ta, stomatal conductance (gs), transpiration rate (E) or assimilation rate (A). However, by 1 DAT, differences between treatments in tree physiological traits were highly significant, and these differences continued diverging with values in the control treatment exceeding those of trees in the water stress treatment at 9 DAT by 42, 43 and 61%, respectively, for gs, E and A. The relationships between Tc–Ta and the three physiological traits were not significant at 0 DAT, but all three relationships were highly significant from as early as 1 DAT onwards. The strength of the relationships between Tc–Ta and the three physiological traits increased markedly over the duration of the water stress treatment, reaching a maximum coefficient of determination (R2) at 7 DAT when values were, respectively, 0.87, 0.86 and 0.67 for gs, E and A. The early detection of changes in tree physiology from 1 DAT onwards suggests that thermal imagery may be useful for a range of applications in field-grown radiata pine.

Funder

Ministry of Business, Innovation and Employment

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3