Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors

Author:

Bar OlafORCID,Bibrzycki ŁukaszORCID,Niedźwiecki MichałORCID,Piekarczyk MarcinORCID,Rzecki KrzysztofORCID,Sośnicki TomaszORCID,Stuglik SławomirORCID,Frontczak MichałORCID,Homola PiotrORCID,Alvarez-Castillo David E.ORCID,Andersen ThomasORCID,Tursunov ArmanORCID

Abstract

Reliable tools for artefact rejection and signal classification are a must for cosmic ray detection experiments based on CMOS technology. In this paper, we analyse the fitness of several feature-based statistical classifiers for the classification of particle candidate hits in four categories: spots, tracks, worms and artefacts. We use Zernike moments of the image function as feature carriers and propose a preprocessing and denoising scheme to make the feature extraction more efficient. As opposed to convolution neural network classifiers, the feature-based classifiers allow for establishing a connection between features and geometrical properties of candidate hits. Apart from basic classifiers we also consider their ensemble extensions and find these extensions generally better performing than basic versions, with an average recognition accuracy of 88%.

Funder

International Visegrad Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3