MRNG: Accessing Cosmic Radiation as an Entropy Source for a Non-Deterministic Random Number Generator

Author:

Kutschera Stefan1ORCID,Slany Wolfgang1ORCID,Ratschiller Patrick1ORCID,Gursch Sarina1ORCID,Dagenborg Håvard2ORCID

Affiliation:

1. Institute of Software Technology, Graz University of Technology, 8010 Graz, Austria

2. Department of Computer Science, UiT the Arctic University of Norway, 9037 Tromsø, Norway

Abstract

Privacy and security require not only strong algorithms but also reliable and readily available sources of randomness. To tackle this problem, one of the causes of single-event upsets is the utilization of a non-deterministic entropy source, specifically ultra-high energy cosmic rays. An adapted prototype based on existing muon detection technology was used as the methodology during the experiment and tested for its statistical strength. Our results show that the random bit sequence extracted from the detections successfully passed established randomness tests. The detections correspond to cosmic rays recorded using a common smartphone during our experiment. Despite the limited sample, our work provides valuable insights into the use of ultra-high energy cosmic rays as an entropy source.

Funder

Research Council of Norway

Open Access Funding by Graz University of Technology

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3