Registration of Multisensor Images through a Conditional Generative Adversarial Network and a Correlation-Type Similarity Measure

Author:

Maggiolo LucaORCID,Solarna DavidORCID,Moser GabrieleORCID,Serpico Sebastiano BrunoORCID

Abstract

The automatic registration of multisensor remote sensing images is a highly challenging task due to the inherently different physical, statistical, and textural characteristics of the input data. Information-theoretic measures are often used to favor comparing local intensity distributions in the images. In this paper, a novel method based on the combination of a deep learning architecture and a correlation-type area-based functional is proposed for the registration of a multisensor pair of images, including an optical image and a synthetic aperture radar (SAR) image. The method makes use of a conditional generative adversarial network (cGAN) in order to address image-to-image translation across the optical and SAR data sources. Then, once the optical and SAR data are brought to a common domain, an area-based ℓ2 similarity measure is used together with the COBYLA constrained maximization algorithm for registration purposes. While correlation-type functionals are usually ineffective in the application to multisensor registration, exploiting the image-to-image translation capabilities of cGAN architectures allows moving the complexity of the comparison to the domain adaptation step, thus enabling the use of a simple ℓ2 similarity measure, favoring high computational efficiency, and opening the possibility to process a large amount of data at runtime. Experiments with multispectral and panchromatic optical data combined with SAR images suggest the effectiveness of this strategy and the capability of the proposed method to achieve more accurate registration as compared to state-of-the-art approaches.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3