Thunderstorm Activity over the Qinghai–Tibet Plateau Indicated by the Combined Data of the FY-2E Geostationary Satellite and WWLLN

Author:

Du Yangxingyi,Zheng DongORCID,Ma Ruiyang,Zhang YijunORCID,Lyu Weitao,Yao Wen,Zhang WenjuanORCID,Ciren Luobu,Cuomu Deqing

Abstract

Thunderstorm activity over the Qinghai–Tibet Plateau (QTP) has important climatic effects and disaster impacts. Using the thunderstorm feature dataset (TFD) established based on the black body temperature (TBB) and cloud classification (CLC) products of the Fengyun-2E (FY-2E) geostationary satellite, as well as the lightning data of the World Wide Lightning Location Network (WWLLN), the temporal and spatial distributions and some cloud properties of the thunderstorms over the QTP were analyzed. Approximately 93.9% and 82.7% of thunderstorms over the QTP occur from May to September and from 12 to 21 o’clock local time, and the corresponding peaks are in August and at 14:00, respectively. There are three centers featuring frequent thunderstorms in the southeast, south-central, and southwest regions of the QTP. The average thunderstorm cloud area (the region with TBB ≤ −32 °C) is 1.8 × 104 km2. Approximately 32.9% of thunderstorms have strong convective cells (SCCs) composed of areas with TBB ≤ −52 °C. The average number and area ratio of SCCs are 3.6 and 25.4%, respectively, and their spatial distribution is given. The average cloud area and the number and area ratio of SCCs of extreme-lightning thunderstorms (thunderstorms with the top 10% of lightning numbers) are approximately 30.0, 3.9, and 1.5 times those of normal thunderstorms. The spatial distribution of the thunderstorm activity is quite different from that of lightning activity given by the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) over the northeastern and southwestern QTP, which may mean that the convection intensity, cloud structure, and charge structure of the thunderstorms over the QTP are different between different regions and seasons.

Funder

Chinese Academy of Meteorological Sciences

Second Tibetan Plateau Scientific Expedition and Research (STEP) Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3