Testing the Robust Yield Estimation Method for Winter Wheat, Corn, Rapeseed, and Sunflower with Different Vegetation Indices and Meteorological Data

Author:

Bognár PéterORCID,Kern AnikóORCID,Pásztor Szilárd,Steinbach Péter,Lichtenberger János

Abstract

Remote sensing-based crop yield estimation methods rely on vegetation indices, which depend on the availability of the number of observations during the year, influencing the value of the derived crop yield. In the present study, a robust yield estimation method was improved for estimating the yield of corn, winter wheat, sunflower, and rapeseed in Hungary for the period 2000–2020 using 16 vegetation indices. Then, meteorological data were used to reduce the differences between the estimated and census yield data. In the case of corn, the best result was obtained using the Green Atmospherically Resistant Vegetation Index, where the correlation between estimated and census data was R2 = 0.888 before and R2 = 0.968 after the meteorological correction. In the case of winter wheat, the Difference Vegetation Index produced the best result with R2 = 0.815 and 0.894 before and after the meteorological correction. For sunflower, these correlation values were 0.730 and 0.880, and for rapeseed, 0.765 and 0.922, respectively. Using the meteorological correction, the average percentage differences between estimated and census data decreased from 7.7% to 3.9%, from 6.7% to 3.9%, from 7.2% to 4.2%, and from 7.8% to 5.1% in the case of corn, winter wheat, sunflower, and rapeseed, respectively.

Funder

Hungarian Scientific Research Fund

Hungarian National Research, Development and Innovation Office

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference96 articles.

1. Review of the Available Remote Sensing Tools, Products, Methodologies and Data to Improve Crop Production Forecasts;Khamala,2017

2. Remote Sensing in Agriculture—Accomplishments, Limitations, and Opportunities

3. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs

4. Review of Crop Yield Forecasting Methods and Early Warning Systems;Basso,2013

5. Leaf Area Index Estimates for Wheat from LANDSAT and Their Implications for Evapotranspiration and Crop Modeling 1

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3