Multi-Temporal LiDAR and Hyperspectral Data Fusion for Classification of Semi-Arid Woody Cover Species

Author:

Norton Cynthia L.,Hartfield KyleORCID,Collins Chandra D. Holifield,van Leeuwen Willem J. D.ORCID,Metz Loretta J.

Abstract

Mapping the spatial distribution of woody vegetation is important for monitoring, managing, and studying woody encroachment in grasslands. However, in semi-arid regions, remotely sensed discrimination of tree species is difficult primarily due to the tree similarities, small and sparse canopy cover, but may also be due to overlapping woody canopies as well as seasonal leaf retention (deciduous versus evergreen) characteristics. Similar studies in different biomes have achieved low accuracies using coarse spatial resolution image data. The objective of this study was to investigate the use of multi-temporal, airborne hyperspectral imagery and light detection and ranging (LiDAR) derived data for tree species classification in a semi-arid desert region. This study produces highly accurate classifications by combining multi-temporal fine spatial resolution hyperspectral and LiDAR data (~1 m) through a reproducible scripting and machine learning approach that can be applied to larger areas and similar datasets. Combining multi-temporal vegetation indices and canopy height models led to an overall accuracy of 95.28% and kappa of 94.17%. Five woody species were discriminated resulting in producer accuracies ranging from 86.12% to 98.38%. The influence of fusing spectral and structural information in a random forest classifier for tree identification is evident. Additionally, a multi-temporal dataset slightly increases classification accuracies over a single data collection. Our results show a promising methodology for tree species classification in a semi-arid region using multi-temporal hyperspectral and LiDAR remote sensing data.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3