An Ensemble Model-Based Estimation of Nitrogen Dioxide in a Southeastern Coastal Region of China

Author:

He Sicong,Dong Heng,Zhang Zili,Yuan Yanbin

Abstract

NO2 (nitrogen dioxide) is a common pollutant in the atmosphere that can have serious adverse effects on the health of residents. However, the existing satellite and ground observation methods are not enough to effectively monitor the spatiotemporal heterogeneity of near-surface NO2 concentrations, which limits the development of pollutant remediation work and medical health research. Based on TROPOMI-NO2 tropospheric column concentration data, supplemented by meteorological data, atmospheric condition reanalysis data and other geographic parameters, combined with classic machine learning models and deep learning networks, we constructed an ensemble model that achieved a daily average near-surface NO2 of 0.03° exposure. In this article, a meteorological hysteretic effects term and a spatiotemporal term were designed, which considerably improved the performance of the model. Overall, our ensemble model performed better, with a 10-fold CV R2 of 0.89, an RMSE of 5.62 µg/m3, and an MAE of 4.04 µg/m3. The model also had good temporal and spatial generalization capability, with a temporal prediction R2 and a spatial prediction R2 of 0.71 and 0.81, respectively, which can be applied to a wider range of time and space. Finally, we used an ensemble model to estimate the spatiotemporal distribution of NO2 in a coastal region of southeastern China from May 2018 to December 2020. Compared with satellite observations, the model output results showed richer details of the spatiotemporal heterogeneity of NO2 concentrations. Due to the advantages of using multi-source data, this model framework has the potential to output products with a higher spatial resolution and can provide a reference for downscaling work on other pollutants.

Funder

National Natural Science Foundation of China

Zhejiang Ecological Environment Research and Achievement Promotion Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3