FY‐4A/AGRI Infrared Brightness Temperature Estimation of Precipitation Based on Multi‐Model Ensemble Learning

Author:

Wang Gen1ORCID,Han Wei2ORCID,Ye Song1,Yuan Song3,Wang Jing1,Xie Feng3

Affiliation:

1. School of Electronic Engineering Chaohu University Hefei China

2. CMA Earth System Modeling and Prediction Centre (CEMC) China Meteorological Administration Beijing China

3. Anhui Meteorological Observatory Anhui Meteorological Bureau Hefei China

Abstract

AbstractSatellite infrared detectors cannot penetrate clouds, especially precipitating clouds. Improving precipitation estimation accuracy based on infrared brightness temperature has always been important but challenging. In this paper, based on the infrared brightness temperature of the Advanced Geosynchronous Radiation Imager (AGRI) onboard China's Feng‐Yun 4A satellite, we develop and evaluate a new precipitation estimation method. First, using static data, physical characteristics of clouds, cloud image texture features, temporal motion features, and AGRI infrared channel brightness temperature, we construct features for a machine learning model. Then, we develop precipitation estimation methods. Precipitation is estimated in two steps: classification and regression. We employ a random forest classification model to identify whether there is precipitation in a given field of view. If there is precipitation, a multi‐model ensemble regression learning method is used to estimate the areas with this precipitation. The ensemble learning method uses convex optimization to integrate prediction results based on the optimization of hyperparameters of five basic models (i.e., those of random forest, XGBoost, LightGBM, decision tree, and extra tree models). Furthermore, two regression stacking ensemble models—the Least Absolute Shrinkage and Selection Operator (herein referred to as Stacking1‐LASSO) and K‐nearest neighbor (herein referred to as Stacking2‐KNN)—are used to predict the results of the aforementioned basic models. The results of basic models are used as inputs of these two stacking models. Finally, based on the Integrated Multi‐satellitE Retrievals for GPM (IMERG) precipitation product and rain gauge precipitation data, we conduct precipitation estimation experiments and evaluate our methods. The results show that ensemble learning models have greater accuracy in estimating precipitation than the basic models. When using IMERG precipitation as the target precipitation, ensemble learning models can estimate the central area of heavy precipitation during typhoons Ampil and Maria. The ensemble learning estimation effect is better than that of Stacking2‐KNN. Moreover, when rain gauge data is used as the target precipitation, ensemble learning can also estimate the center of heavy precipitation and with good consistency with recorded satellite brightness temperature data.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3