Improvement and Verification of One-Dimensional Numerical Algorithm for Reservoir Water Temperature at the Front of Dams

Author:

Zheng Xuerui,Shen ZhenzhongORCID,Wang Zhenhong,Qiang Sheng,Yuan MinORCID

Abstract

The deep-water temperature of large reservoirs is low, thus easily leads to the appearance and expansion of cracks on the upstream faces of concrete dams. Therefore, in the design phase of a dam, accurately predicting the water temperature distribution at the front of the dam during the operation period of the reservoir takes on a critical significance in the dam simulation analysis of temperature control and crack prevention design. The vertical one-dimensional numerical algorithm of reservoir water temperature was optimized in accordance with the heat transfer equation and considering certain factors (e.g., water temperature transfer, inflow distribution, slag at the bottom of the reservoir, and solar radiation) to solve the above problem. The Nash–Sutcliffe efficiency coefficient (NSE) was adopted to analyze the simulation error qualitatively and quantitatively, and to verify the applicability of the algorithm. The results validated with temperature data measured in four reservoirs illustrate that the proposed algorithm exhibits a higher prediction accuracy than the empirical equation method for water temperature at the front of dams at different scales under different operation modes. The mean deviations of the proposed algorithm are all below 1 °C, and the Nash–Sutcliffe efficiency coefficients (NSE) are all above 0.85. Moreover, compared with the three-dimensional numerical algorithm, the proposed algorithm not only requires a smaller amount of data, but also is simpler to apply and has a higher efficiency. The twelve-month water temperature calculation for a large reservoir takes less than 1 min. This study further reveals that the slag at the bottom of the reservoir is capable of significantly rising the temperature at the dam heel by 5–6 °C. The program compiled by the proposed algorithm can be seamlessly embedded in the simulation program for concrete dam temperature control; thus, the reliability of the simulation of the temperature can be enhanced for temperature field and stress field on the upstream surface of the dam without affecting the total calculation efficiency.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3